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The next counterexample shows that (2.7) is false; and it seems

to us that this invalidates	 R(S*, P*)	 as a reasonable procedure

since the infimum of	 P[CS)	 is not controlled even asymptotically.

The expedient of the authors of the latest version of (7) of

considering only that part of the parameter space where

1
0(11-2)	 is difficult to translate into-	 =	 practice.e [k]	 8[11

Does it mean that one should use	 R(S*, P*j	 only when one is

con.inced that8 [k] - 9[1) = 0(n 2).

Counterexample 2.

Consider the logistic cdf 	 F(x) _ (1 + e-x )
-1	 and let

e(S*) a D(S*)	 be a sequence of	 0-values depending on	 8*	 as

follows:

(2.8)	 el 	 ... = e	 = -e , 8	 = 0, 6	 = S*,1	 k-t-1	 0	 k-t	 k-t+1

ek-t+2 = ... = ek = e0s

where	 a	 is a fixed positive constant and 	 * < e .P	 S0	 0

We now prove the following assertion: 	 For each	 k > 3	 and each

- t < k, there exists a value of 	 P*,	 say PD,	 (t) -1 < 0 < 1, 	 such that
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In problem II the experimenter sets only the P*-value and requires

that, with probability greater P*, the selected subset contains the

index of the largest 8-value. This problem might arise in screening

drugs as cancer cures; one would want to reduce the number of drugs

which are to be submitted to further tests bu at the same time be

reasonably sure of not eliminating any drug which is a potential cure.

In this paper we examine certain procedures which have been claimed

elsewhere to be solutions to these problems. We show by means of

specific examples that these procedures are in fact not solutions and

should be used with caution if they are used at all.
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Counterexamples Concerning Least Favorable Configurations

By

M. Haseeb Rizvi and George G. Woodworth

r	 l . In ;roduction -

Let nl , n2 ,	 , n  denote k > 2 univariate populations

differing only in location; that is, an observation $i drawn from

n i has cumulative distribution function (cdf) F(x - 6; ) where F
1

is a known continuous cdf with square integrable density f but the

location parameter vector 8 = (el , _.. , ek ) is unknown. Let the

ordered values of the location parameters be denoted by

-	 Selecting the t best populations.

The decisionroblem here is to select thep	 populations corresponding

to the t < k largest 6.-values. The goal of the decision maker is

to find a procedure, say R, and a sample size n such that the

probability of a correct selection using rule R, P[CSIR,e], has

the property that

(l,lj	 inf	 P[CSIR,B] > P*)
A e D(S*)

where

(1.2)	 D(S*) _ [ei e	 - 8	 > 8*},
[ k-t+1 ]	 [ 

k- 
t J

and	 t -1 < p <-1: and L,8_ >;, 	 are preassigned constants.(t)	 *	 P	 8n

.1
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Selecting a subset containing the best population.

The decision problem here is to select a subset of the k

populations containing the population associated with 9 (kj . The

goal of the decision maker is to find for fixed n and preassigned

P* < 1 a procedure, say R", such that

(1.3)	 inf P(CSIR", el > P*.
8	 r

We consider two procedures (proposed elsewhere) based on rank

sums and show by counterexamples in sections 2 and 3 that they do

not satisfy (1.1) for (1.3)).

2. A procedure based on rank sums for selecting the t best populations.

Let M • i = 1 1 ... , k, j = 1, ... , n] be k samples each of

size n (n is to be determined by (1.1)), 
Mij 

being the jth

observation from ni , and let Rij be the rank of $ij among all the

observations.

Define the rank sums

n
(2.1)	 Tin = 12 Z Rij , i = 1.9 	 , k

n J=1

(2-2) > 1,2 ^,
' L ^' I 

{$i^ > 
$rs + nn J=1 s=l r=1

where I(-) is the indicator of the event in parentheses.

The proposed selection rule, call it R(n), is as follows:

i) Draw samples of size n from each population and

compute Tin for 1 = 1,	 , k.
i

ii) Select the t populations having the largest Tin-values,
3

resolving ties by the obvious randomization.
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The problem now is to find a value n = n (8*, P*; k, t ) F) such

that R(n) satisfies (1.1).

In solving this problem a crucial role is played by the slippage

configuration ^:

(2.3)	 e[ll _ ... = e[k-t) = e[k-t+1] - S* = ... = e[k) - 8*.

Many selection rules, for example the rule based on the sample means,

have the property that the infimum in (1.1) is attained when 0 is in

the slippage configuration; in other words for many rules the slippage

configuration is the least favorable configuration. For such rules it

is a relatively easy task to find the appropriate value of n (see,

for instance, Example 1 of [1]). The following counterexample, kindly

communicated to the authors by E. L. Lehmann, shows that for the rank-

sum rule R(n) the slippage configuration is not least favorable.

Counterexample 1 (E. L. Lehmann).

Let k = 3, t = 1 and let F be a continuous cdf which places

probability q and p = 1 - q respectively on the intervals (0, e)

and (1, 1 + e); £ < 1/3 is a constant. Let s* = e and consider two

parameter values:

80 = ( 0, 0, 8*) , 8l = ( 01 S*, 28*).

For n = 2, we show that

(2.4)	 P[CSIR(2), 0 1 > P(CSIR(2) ) 81^.

Since 80 is in the slippage configuration and 0, 81 a D(8*),

3



defined by (1.2), this provides the required counterexample.

Proof: The supports of the distributions of the populations under the

two parameter configurations can be depicted as shown in Figure 1.

8.0 . n2

"3

it

81 : n2

n3

0	 S* 25*	 35*	 1 l+s* 1+25* 1*38*

Figure 1: Supports of Distributions.

Let B  be 0, 1 or 2 according as 0 1 1 or 2 observations

from A  
are in the upper interval of the support of its distribution.,

B = (B1, B2 , B3) and b = (bl, b2 , b3) is a realization of B. Clearly

2
P[B = ble] =	 bi) p

bi 2-bi
q	 for 9 = 80 or Bl.

y -	 i=1

R = (Rij : i 11 2, 3) j = 1, 2) is the vector of ranks and

r = (rid ) is a realization of R. Given R = r a correct selection
M	 Y	 w	 ti

(selection of n3) occurs with probability l if r31 + r 32 >

max(r21 + r22, rll + r12), with probability 	 if r3l + r32 = r21

+ r22 > r11 
+ r12 or r

31	 32	 11	 12	 21	 22'
+ r = r + r > r + r	 and with

probability 1/3 if r
31	 32	 21	 22

+ r = r + r = r 11
	 12'

	+ r	 The conditional

probability that R = r given B = b is easy to compute ) for example
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P(R = (1 ) 2; 5, 4 ;5, 6) !B=(0,0,0),8]= 1/48 1 

1/8 1=1.

Thus, for each of the 27 values of b one can determine the conditional
ft

probability of a correct selection given B = b under 80 and 81.

For most of the b the probability is the same under e0 and 0 1 but

in the six cases listed In Table 1 there is a difference.

Table 1

b P[B = b]
P[CS It = t y

80

8]

el
( 0 1 1, 0) 2pg5 5/6 1/2

(1, 0, 0 ) 2pg5 5/6 1

(1, 1 1 0) 4p2q 1/6 0

(1 1 2 1 1) 4p4q 1/2 0

(2, 1, 1) 4p4g2 1/2 1

(2 , 21 1) 2p5q 119 0

Thus

P[CSIR(2), 
e01 - PLCSIR(2), 8l]

= 3 Pq5 + p2g4 + 9 p 5 > 0,

,-	 which establishes counterexample 1.

The possibility still remains that the slippage configuration is

f	 asymptotically (S* -► 0) least favorable; an asymptotic solution based

on this assumption has been claimed by various authors ([41 t  [7] and ($J).

:'	 This solution is as follows;

Let A(P*; k, t) be the solution of

5



(2.5)	
fok-t(x + A)dOt (x) = P*

where 0 is the standard normal cdf, and define n($*, P*; k ) t, F)

to be the smallest integer larger than

(2.6)	 A2(P*; k, t) / 12[8*If2(x)dxl21

where f is the derivative of F. The selection rule

R(8*, P*; k, t, F) = R(S*, P*) is the rule R(n) with n set equal

to n(8*, P*; k, t, F). The natural inclination to call R(S*, P*)

"distribution-free" must be resisted; obviously one needs to know F

to carry out this procedure.

if 8 is in the slippage configuration (2.3), then it can be
N

shown ([7) or [81) that

lim P[CSIR(8*, P*), 90 1 = P*
8*_ 4

The aathors of (4) and [81 have incorrectly asserted that the slippage

configuration is least favorable (this was also.asserted in earlier

versions of (71) from which it would follow that R(8*, P*) satisfies

(1.1) asymptotically as 8*-,0; i.e. for fixed P*, it has been

claimed that

(2.7)	 lim	 inf	 P[CSIR(8*, P*), Ell = P*.
8*-+ C 8EA(8*)

6
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The next counterexample shows that (2.7) is false; and it seems

to us that this invalidates	 R(S*, P*)	 as a reasonable procedure

since the infimum of	 P(CS]	 is not controlled even asymptotically.

The expedient of the authors of the latest version of (7] of

x
considering only that part of the parameter space where

8[k] - 6[11 = 0(n 2 )	 is difficult to translate into practice.

Does it mean that one should use 	 R(b*, P*1	 only when one is

_ inced that	 6(k]	 $^ 1] = 0(n	 ).con	 -

Counterexample 2.

Consider the logistic cdf 	 F(x) _ (1 + e -x ) -1	 and let

E

6(S*) F- D(S*)	 be a sequence of	 6-values depending on	 S*	 as
1r	 N

follows:

} (2.8)	 el = ... = 6
k-t-1 = 

-6
0' 6k-t - 0' 6k-t+1

z

s where	 6	 is a fixed positive constant and 	 * < 60	 P	 S	 0.

We now prove the following assertion:	 For each	 k > 3	 and each

t < k, there exists a value of 	 P*,	 say PD, (t)
-1
 < S < 1,	 such that



(2.9)	 lim P[CSIR(s*, Q), 0(5*)] < a,
s* -> 0

which clearly contradicts (2.7).

Lemma 1.

(2.10)	 lim P[CSIR(s*, P*), 6(5*)]
g*-4 0	 '.

< 0(2 iz A*A(80)),

where

(2.21)	 A* = A(P*; k, t),

(2.12)	 P(80) = 32 % (2F - 1)dF/[f 2- dF - (fHe
 dF)2]2

0	 0	 0

and

(2.13) He (x) = k-1[(k - t - 1)F(,x + @0) + 2F(x) + (t - 1)F(x - 80)].
0

Proof: Notice first that if 81 < 82 < ... < 8k, then

(2.14)	 P[CSIR(8*, P*), e]

< P[ max	 T < min Ti in !8]1<i<k-t in — k-t<JQt

< P[Tk-t+l,n - Tk-t,n > 0l8)'

8
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where n is the smallest integer greater than (2.6). .^rom ( 2.2) one

has, with probability one when 8 = 0(8*),

Tk-t+l,n - Tk-t,n

1 n n

= n2 j
Z SZ1 

(2I(Xk-t+l, j Xk-t,$) - 1

+ VEk-t 
(I(X

k-t+l,j > Xis)

or k-t+1

- I(Xk-t,j > Xis)}}

1 n
(2.15)	 _	 (F(&.. - S*) - F(Z j)}

n j=1 Vk-t,k-t+1	 1J

n
- n	 (2F(-Zk-t,j - S*) + (k - t - 1)F($k-t,j+ 8o)

j=1

+(t - 1)F(Xk_t, j - 80)j

1 n
+ n .E (2F(Xk-t+l,j) + (k - t - 

1)F^-t+l,j + go)
J=1

+(t - 1)F(Xk-t+l, j - go))

+ 1 - 2f F ( x + &*)dF (x) + (k- t 1) f F(x +8o)d(F(x - S*)-F(x) )

+ (t - 1)fF(x - 00)d(F(x - S*) - F(x))

where E en ( 8o, S*) < C/n2 and C is an absolute constant. Note that

(2.15) is obtained by U-statistic arguments in imitation of, say, the

proof of Theorem 5.6 1 p. 229 of (3).



Let

(2.16)	 W  = 
J(Tk-t+l,n - Tk-t,n)p

routine calculation yields

EWn = ni(2fF(x + $*)dF(x) - 1

+ (k - t - 1) f(F(x - 60) - F(x- 60-5*))dF(x)

+ (t - 1)	 f (F(x + e0 ) - F(x +e o-5*))dF(X)) .

By (2.6) and (2.11) one has n 2S*-+ A*[12ff2] 7 as S*-+ 0; thus,

by Olshen's Lemma (p. 1766 of [51)

(2.17) lim EW = A*	 (2ff2 (x)dx + (k - t - 1)ff(x - 8 )f(x)dx
8*-> 0 n	 , f f2	 0

+ (t - 1)ff(x + 60)f(x)dx).

Also

(2.18)	 lim Var(Wn) = 2k2 (fH2 dF - (fxe dF)2),
S*-> 0	 0	 0

where He is defined by (2.13).
0

If we set F(x) = (1 + e-x ) -1 , then f(x) = F(x)(1 - F(x)) and

ff2 = 1/6, so that (2.17) becomes, after integrating by parts,

1
lim EWn = 32A*kfHe (2F - 1)dF.

S*-+ 0	 0

Since (2,15) is asymptotically normal by Liapunov's theorem, it

follows that

lim P[CSIR(S*, P*), e(g*)]
6*-+ 0	 M

5*-+0P[Tk-t+l,n - Tk-t,n > 018(5#)]

10



= lim F [ (Wn - EWn ) (Var (Wn ) )i > -EWn/(Var(Wn))ile(s*)]
8*-+ 0

1

= 0 ( 2 2A*p(e0)),

which proves Lemma 1.

Remark. For e0 > 0, He is clearly not a linear function of F and,
0

since He and F are both monotone increasing, we have
0

(2.19)	 0 < p(80) < 1.

Lemma 2.

For any k and t

(2.20)	 lim 2 2 0 -1(P*)/A* = 11
P*-+ 1

where A* = A(P*; k, t) and A is defined by (2.5).

Proof: Let Zl ,	 , z  be independent normal (0,1) random

variables. Then,

1 - P* = 1 - f0k-t(x + A*)dOt(x)

= P[ max Z. > min Z^ + A*]
1<i<k-t 1 k-t<j<t

P[	 U	 (Zi > Z + A*)]
1<iQs - t<,j<k

< t(k - t)P[Z 1 > Z  + A*]

= t(k - t) [1 - 0(2-
1
 A*)].

Also clearly

1 - P* > [1 - 0(2-
1
 A*)].

4



Lemma 2 now is a consequence of the following easily verifiable fact

i
lim 0 -1(u)/[- 2 log(1 - u)] f = 1

U -* 1

and of the well known approximation to Mills' ratio.

Counterexample 2 now follows from (2.10), (2.19) and (2.20) by

selecting P* large enough so that

2-2A(p^9 k, t )/O-1( 
o) < 1/p(e0).

A remark on the scale parameter case.

Suppose A  has cdf F(x/Qi) where F(x) = 0 for x < 0, F is

known, and a = (al, ... ) ak) is unknown (if F(x) ^ 0 for x < 0

then replace x by IxI). R(n), with 
X 

j replaced by Z ip , could

be used to select the t smallest a-values; in [6] it is asserted

that, for any constant e* > 1, P[CSIR(n), a-] attains its minimum,

subject to the condition

2	 2
¢[t+l]^a[t] > 8 > 1,

• when

e*a(l] = ... = 6*a[t]
	

[t+l] = ... = a[k].

That this is false, even asymptotically (e*-+l), follows from

Counterexample 2 by considering the random variable Y = log($), since

if S has cdf F(x/a) then Y has calf 1-F(exp(µ - y) ), where u =log o,

and 
Yij 

has the same rank as Zij.

1.12



3. A procedure based on rank.,sums for-selecting a subset containing

the best population.

The authors of [2] propose the following procedure, call it RI(n):

Put n  in the selected subset iff

Tin ?I max Tin - cn,

where

(3.1)	 c  = (12n) -2 kA* + o(n -2)

and A* = A(P*; k, 1), defined by (2.5). We shall show that the

slippage configuration: e[1] = 9 [2] 	 9[k] is not least

favorable by proving the following:

Counterexample 3.

Let e1 denote the configuration

el =	 = ek-2 = -1, ek -1 
= e  = 0

and let eo denote the slippage configuration for this problem:

el = e2 =	 = ek . If F(x) is as ill (3.7) and k > 3, then

(3.2)	 lim P[CSIR'(n), el ] < P* = lim P[CSIR'(n), e
n -+ oo	 n -+ oo

Proof: The equality is established in [2] and the inequality below.

Clearly

( 3 . 3)	 P[CSIR'(n), e1] < P[Tkn -Tk-1 n > -cnjell.

It follows as in the proof of Lemma 1 that W  = J(Tkn - 
Tk-1 n)

has a limiting normal distribution with zero mean and variance

13



Q (H) = 2k2 (fH2dF -(fH dF)2),

where

(3.4)	 H(x) = k-l[(k - 2)F(x + 1) + 2F(X)I.

Thus by (3.1) and (3.3)

	

lim P[CSjR'(n),i9	 _ 0(k(12)-2A*/a(H)).
n -► oo

It follows from (2.20) that for any E > 0 there exists2 < PE < 1

such that

A* = A(PE; k, 1) < (1 + E)22
.1 0-1

Thus the counterexample will be proved if it can be shown that

(3 . 5)	 C^(H) > k2/6.

From (3.4)

(3.6) a (H)/2 = 4/12 + 4(k-2)Cov(F(g), F(Z+1)) + (k - 2)2 Var (F(% + 1)),

where S has cdf F.

Now let

(3.7)	 F(x)=1

1/2

1/2 + x/2b	 -b < x < 0

1/2	 0<x<1

+ (x - 1 )/2a	 1<x<1+a,

where 0 < a < 1 < b are constants to be determined below.

14



Thus,

F(x + 1) = 1/2 + (x + 1)/2b

1/2

1/2 + x/2a

1

-(b+1) <x<-1

-1<x<0

0 < x < a

a < x

I

or, except for a set having zero F(x)-measure,

(3.8)	 F(x + 1) =1 F(x) + 1/2b	 0 < F(x) < 1/2 - 1/2b

1/2	 1/2 - 1/2b < F(x) < 1/2

1	 1/2 < F(x) < 1 .

If $ has cdf F then F($) is a uniform random variable and

it follows from (3.6) and (3.8) that

(3.9) Q2(H)/2 = k2/12 + (13k--10)(k - -2)0 - 0(3k2 - 8k + 4)/8

+ 3P2 (k - 2) 2/8 + 03(k2 - 4)/6

- P4 (k - 2)2/4

where 0 = (2b) -1 . It is clear that for sufficiently small P

(large b) the right side of (3.9) can be made larger than k2/12 so

that (3.5) is satisfied and Counterexample 3 is proved.

4. Concluding remark.

Procedures R(n) and R-(n) are special cases of the scores

procedures proposed in (21, [4] ) [6], 171 and 181. The second

counterexample probably works for any scores procedure when F

(instead of being logistic) is the cdf against which the scores are

locally most powerful.

15,
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ted to select the	 t	 best batches. In problem II the experimenter sets only the
-value and requires that, with probability greater 	 P*, the selected subset con-

ains the index of the largest 0-value.	 This problem might arise in screening drugs
s cancer cures; one would want to reduce the number of drugs which are to be su'ar.
tted to further tests but at the same time be reasonably sure of not eliminating "r

drug which is a potential cure.	 In this paper we examine certain procedures
ich have been claimed elsewhere to be solutions to these problems.	 We show by
ens of specific examples that these procedures are in fact mot solutions and s bouL

e used with caution if they are used at all..
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